CALFLEXHUB SYMPOSIUM NOVEMBER 3 | 8am-4pm PT

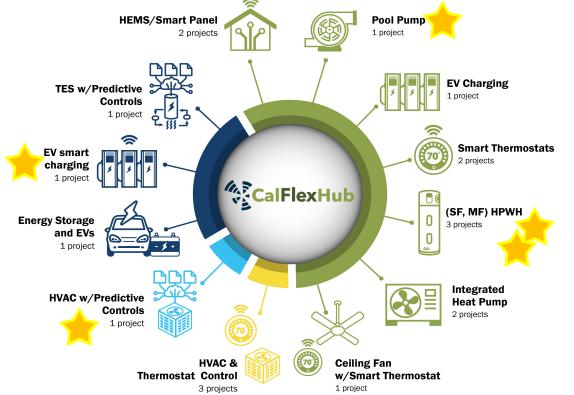
PETER GRANT

TRISTAN DU FRONDEVILLE

JOE BOURG

RICH BROWN

KEATON CHIA


PROJECT SHOWCASE: FIELD PROJECT OUTLOOK

SPEAKERS: Peter Grant, Senior Scientific Engineering Associate, Berkeley Lab; Tristan De Frondeville, CEO, SkyCentrics; Joe Bourg, Vice President, Olivine; Rich Brown, Research Scientist, Berkeley Lab

8

Develop and Validate Price- and Load-Responsive Controls for Prototype 120-volt Retrofit-Ready Heat Pump Water Heaters

Test Site(s): 10+ singl	e family
homes	

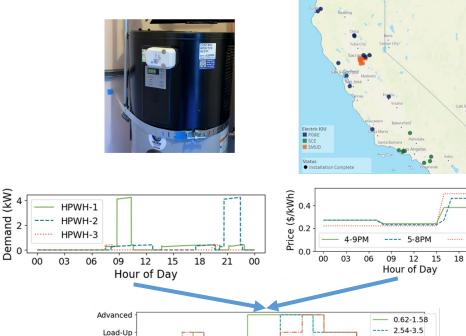
Sector/Building Type	Single family residential Multifamily residential w/ individual water heaters
Technology & End Use	Water heating
Communications Pathway	Cloud-based intelligence Signals sent via CTA- 2045B or API
Expected Grid Benefit	Up to 3.5 GW of peak load avoided Up to 3.5 GW of mid-day solar absorption
Testing Status (Timeline)	Beginning installations Testing Nov - Jan

Prime

21 00

5.42-6.39

9.27-10.23


00

21

15

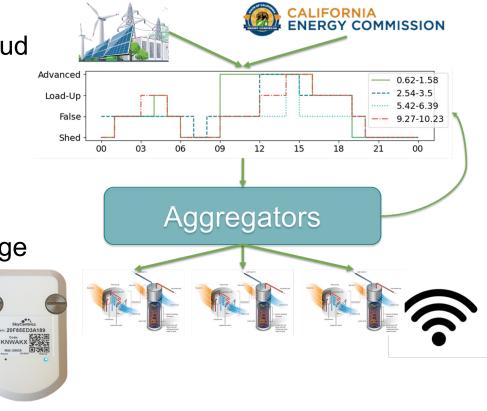
12

18

False

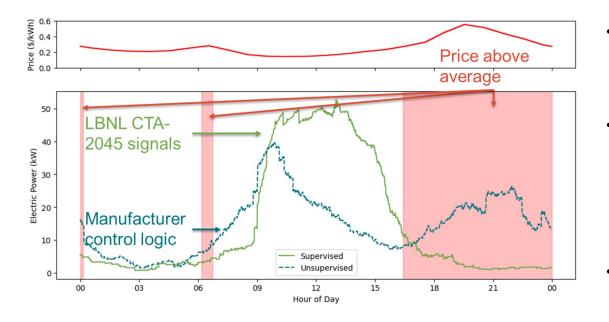
Shed

00


03

06

09


Communication Architecture

- Intelligence located on the cloud
- Converts price schedule into load shifting control signals
- Sends:
 - CTA-2045B signal
 - API set temperature change

Simulation Results

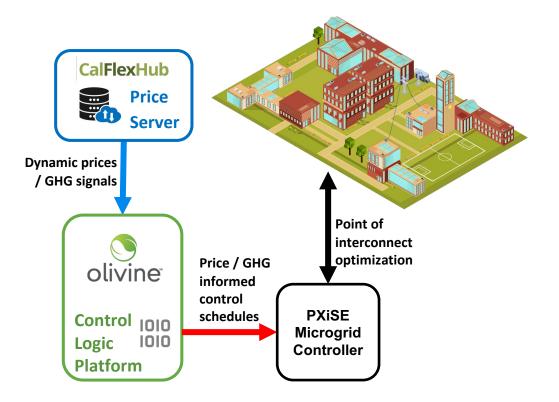
Finalizing site recruitment - Expect test results within 1-2 months

- Qualitative
 - Shifted load from high price (red background) to low price (white background) times
- Quantitative
 - 29% cost savings
 - 75% peak period kWh reduction
 - 102% mid-day kWh increase
- Comparison to status-quo
 - Not customized to behavior: 12% cost savings

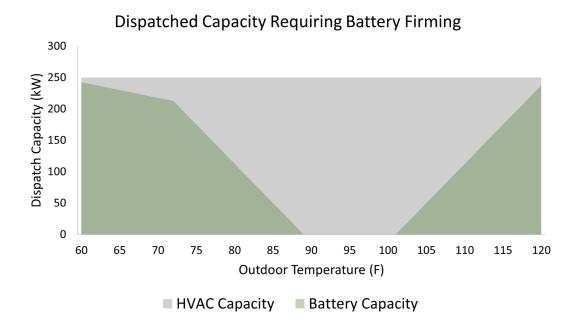
Key Learnings

- Collaborating with IRB helps get Human Subjects Protocol approved quickly
- Customizing control to on-site behavior can significantly improve results
- Need to focus on easy deployment

Santa Rosa Junior College Battery Firmed Multi-Building HVAC



Test Site: 26 buildings, including a mix of lecture and classroom buildings, dining services, library and administration offices.


Sector/Building Type	Campus; C&I
Technology & End Use	Microgrid Controller / Building Automation System / HVAC Control w/ Battery Firming
Communications Pathway	3 rd party (Olivine) cloud - > OEM cloud -> BAS -> HVAC and BESS
Expected Grid Benefit	250 kW load shifting response to dynamic signal; summer peak and emergency reliability
Testing Status (Timeline)	Functional Test in November 2023 Field Test # 1 June 2024

Communication Architecture

- Battery firmed multi-building HVAC
- PXiSE microgrid controller accesses price informed control schedules through Olivine's APIs
- PXiSE incorporates kW capacity commitments specified in control schedules into existing optimization
- Campus wide 6°F HVAC setback with battery to firm unmet capacity
- Capacity commitments measured and controlled at the microgrid point of interconnection

Key Learning Objectives

Develop a profile of the campus wide battery firming threshold

Process:

Dispatch a range of capacity (kW) levels for each test period. A different value daily. Using battery submeter data and whole premise meter data, analyze the HVAC capacity and battery capacity delivered as a function of outdoor temperature.

Objectives:

Determine the minimum dispatch level requiring battery firming as a function of outdoor temperature.

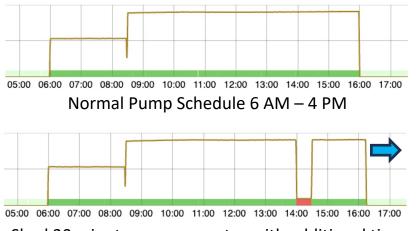
Determine the ratio of HVAC capacity to battery capacity delivered as a function of outdoor temperature

Determine dispatch price threshold levels for firming with battery discharge

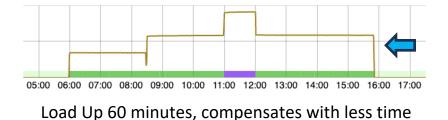
Low Cost Cellular Shifting

Residential pool pumps & water heaters Multi-family and commercial water heaters

Test Site(s): 20 pool sites, 1 K12 school district, 2 multi-family, 10 bay area cities


Sector/Building Type	Residential Multi-Family Commercial
Technology & End Use	Cellular CTA-2045 EcoPort Water Heating, Pool Pumps
Communications Pathway	Cellular
Expected Grid Benefit	13 M CA water heaters 1 M CA Pools Over 3% of grid - shiftable
Testing Status (Timeline)	Installed October 24 Shifting and quantifying now

Communication Architecture


- The SkyCentrics OpenADR and CTA-2045 EcoPort platform can accommodate multiple paths to devices
 - Low Cost Cellular
 - Wi-Fi
 - API
- Daily Schedule stored locally for resilience to lost connectivity

Test Results – Pool Algorithm

Shed 30 minutes, compensates with additional time

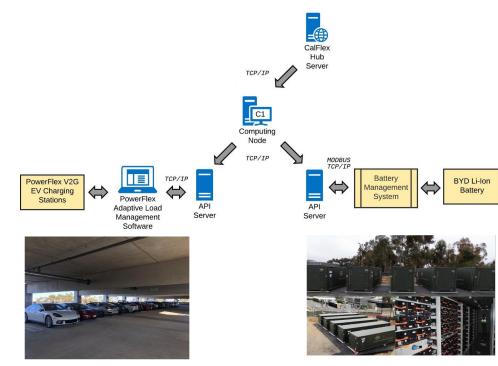
 IntelliConnect Pool Pump Control has internal algorithm to maintain daily pump total while responding to grid price signal (translated to CTA-2045 by SkyCentrics cloud)

Test Results – Multi-Family

	Load Shape: Market Rate Shed: 6-9 AM, 6-9 PM				Load Shape: Market Rate Shed: 5-9 PM								
Gal	lons Per Day Per Person	17	19	21	23	25	Gal	Gallons Per Day Per Person 17 19 21 23			25		
	Percentile Day	50%	69%	84%	93%	98%		Percentile Day	50%	69%	84%	93%	98%
	(210 gal, 320kBTU/hr)	0.61	0.55	0.5	0.5	0.46	(210 gal, 320kBTU/hr)		0.74	0.71	0.68	0.63	0.59
	(270 gal, 280kBTU/hr)	0.57	0.52	0.49	0.45	0.43	(270 gal, 280kBTU/hr)		0.71	0.64	0.59	0.56	0.52
	(330 gal, 260kBTU/hr)	0.52	0.48	0.43	0.39			(330 gal, 260kBTU/hr)	0.7	0.65	0.63	0.6	0.57
	(410 gal, 240kBTU/hr)	0.61	0.55	0.51				(410 gal, 240kBTU/hr)	0.56	0.53	0.47	0.47	0.48
	(490 gal, 220kBTU/hr)	0.65	0.61	0.57			(490 gal, 220kBTU/hr)		0.63	0.58	0.53	0.55	0.49
Ę	(590 gal, 200kBTU/hr)	0.73	0.68	0.65	0.61		₹	(590 gal, 200kBTU/hr)	0.75	0.7	0.65	0.59	0.55
Capacity	(690 gal, 190kBTU/hr)	0.78	0.76	0.75	0.71		baci	(690 gal, 190kBTU/hr)	0.85	0.79	0.74	0.67	0.63
	(780 gal, 180kBTU/hr)	0.81	0.79	0.77	0.72		(590 gal, 200kBTU/hr) (690 gal, 190kBTU/hr) (780 gal, 180kBTU/hr)		0.93	0.86	0.82	0.78	0.78
Storage,	(860 gal, 170kBTU/hr)	0.87	0.83	0.81	0.79	0.77	e) (860 gal, 170kBTU/hr)		1	0.98	0.92	0.72	0.73
ora	(930 gal, 160kBTU/hr)	0.92	0.87	0.83	0.81	0.79	Storage,	(930 gal, 160kBTU/hr)	0.98	0.87	0.84	0.83	0.81
St	(1000 gal, 150kBTU/hr)	0.96	0.91	0.87	0.83	0.81	St	(1000 gal, 150kBTU/hr)	1	0.97	0.95	0.91	0.88
	(1050 gal, 140kBTU/hr)	0.99	0.94	0.89	0.85	0.82		(1050 gal, 140kBTU/hr)	1	1	1	0.97	0.93
	(1100 gal, 130kBTU/hr)	1	0.97	0.92	0.88	0.85		(1100 gal, 130kBTU/hr)	1	1	1	1	0.98
	(1150 gal, 130kBTU/hr)	1	0.99	0.94	0.9	0.87		(1150 gal, 130kBTU/hr)	1	1	1	1	1
	(1190 gal, 120kBTU/hr)	1	1	0.97	0.93			(1190 gal, 120kBTU/hr)	1	1	1	1	0.97
	(1230 gal, 120kBTU/hr)	1	1	0.98	0.95			(1230 gal, 120kBTU/hr)	1	1	1	1	0.98

- Two year data used in a similar multi-family heat pump central system installation by SkyCentrics, Mitsubishi, and EcoTope in Seattle
- CA installations expected to offer even better results in milder climates

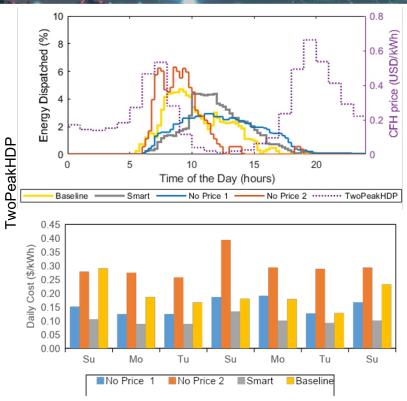
Table 2. Market Rate Housing Load Shift Simulations


https://www.bpa.gov/-/media/Aep/energy-efficiency/emerging-technologies/20230829-mitsu-co2chpwh-bayview-towers-report.pdf

Key Learnings

- New CTA-2045 Pool Pump Controller designed for 1x day Demand Response
- Algorithm needs to accommodate multiple times per day for Price Control
- Multi-family heat pump a big opportunity thanks to large loads, one owner or decision maker
- Cities have some high use water heaters (fire stations), but otherwise, very shiftable load opportunity

Flexible Electric Vehicle and Battery Energy Storage Charging Keaton Chia, UC San Diego



battery energy storage system (BESS) 20 electric vehicles (Evs)	
Model Predictive Control / Energy Management System (EMS)	
PowerFlex Data -> Local MPC server -> PowerFlex Control -> EVs BESS data> Local MPC server BESS control> BESS	
 Load shifting in response to dynamic utility signal 	
 May - June 2022 EV June – July 2023 BESS 	

Sector: Building Type 1 5 M/W / 1 9 M/W/b stationary

Communication architecture: EV charging stations operated by industry partner PowerFlex follow a price signal, first independently and then jointly with the support of a battery energy storage system (BESS).

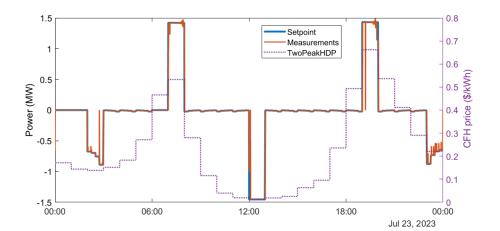
Electric Vehicle Field Test Summary & Takeaways

Top: Daily profile of Tuesday for four EV charging strategies. Bottom: One week of daily costs (normalized) for four EV charging strategies. • Benchmark: EV charging with no price signal:

No Price 1 (simulated): constant power for the entire plug duration;

No Price 2 (simulated): maximum charging power until energy demand is satisfied;

Baseline (actual): power optimized with no price signal.


 Smart charging (actual) strategy follows price signal and shifts charging peak towards noon.

% Energy ≤ \$0.1/kWh	Su	Мо	Tu	We	Th	Fr	Sa
No Price 1	65.7	67.8	66.2	55.8	58.0	66.3	58.9
No Price 2	31.8	22.4	24.3	6.0	24.5	18.0	18.8
Smart	75.6	78.3	77.3	64.3	75.3	75.7	74.2
Baseline	22.8	45.2	47.9	46.8	51.5	62.8	31.0

Battery Energy Storage System (BESS) Field Test Summary & Takeaways

- BESS discharges at peak prices and charges at minimum prices
- ~\$1,000 daily revenue opportunity from arbitrage
- Higher arbitrage opportunity with two peak pricing

Test Date	Price Curve	Daily Revenue		
07/22/2023	TwoPeakHDP	\$1,226		
07/23/2023	TwoPeakHDP	\$1,347		
07/29/2023	SummerHDP	\$1,018		
07/30/2023	SummerHDP	\$1,023		
08/06/2023	SummerLDTOU	\$893		

