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CalFlexHub Technology
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% 21 demo projects

% 106 existing test sites
% 40 DAC/ 21 LI sites

% 3 new sites (SF, SC)

* hundreds of EVs (new)

Breakdown of Existing Test Sites:

Single Family 68
Multifamily 25
Small Commercial 8
Large Commercial 1
Campus 4
EVSE 28
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Technology Performance

* EV charging and integrated heat
pump systems with hot water storage
can shift load for several hours to
access lowest electricity prices

% Model Predictive Controls (MPC) can
shift significant load and reduce energy
cost in large buildings and campus
central plants

+ Residential and small commercial
HVAC can provide significant load
shed during short periods
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Dynamic Heat Pump Design and Control for Small Commercial HVAC

» Supervisory MPC control system for small commercial
systems w/ rooftop units or other small systems
« Can coordinate operation of multiple units

« Can optimize for cost, energy, CO, emissions

« Can be integrated with the off-the-shelf controllers.

Test Sites:

* VRF system // Office building (13 zones) in Davis

« HP-RTU // School building (2 zones) in Bakersfield

« HP-RTU // Library building (2 zones) in LA

«  Split system // Multi-family (2 zones) in San
Bernardino

* HP-RTU // Church building (1 zone) in Menlo Park

 HP-RTU // Church building (4 zones) in San Leandro

Sector/Building Type Small Commercial

Technology & End Use Rooftop units & thermal storage for
space and water heating

Communications Pathway Research Cloud-> OEM Cloud ->
Thermostat via Cellular & Wi-Fi

LAN

Testing Status/Timeline In Progress

oy : - -
3 e \

. - A

| receee r”|

BERKELEY LAB | >~



Communication Architecture

Optimal setpoint

_____________________________

Middleware
Thermnstat (VOLTTRON)

Optimal Optimal
setpoint ' setpoint

MPC Data
engine J agent

' Data

On-site server

Summer CalFlexHub signal

Price/Weather |
service

.......

Spring CaIF.IexHub signal

¢ Integration of price, weather,
and thermostat drivers using
VOLTTRON.

¢ Ability to shift price signal
(CalFlexHub signal, TOU).

*+ Deployment without
hardware retrofit in SMCBs.




Winter Test Results (VRF for 13 office zones)
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Summer Test Results (VRF for 13 office zones)
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HP power (60-min MA) [kW]
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 11% load shifted, despite:
« (a) tight deadband (70-72F),

* (b) load characteristics (all-
day cooling),

* (c) limited number of
devices (2 HPs).
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Key Learnings

% HP-Flex is applicable to various types of SMCBs and HPs including VRF system
and does not need hardware retrofits (with networked equipment/thermostats)

% MPC'’s performance depends on price/building/load characteristics,
« A screening tool to select sites with high potential would be beneficial

 Deployment process is automated, but still discovering site-specific control conflicts
between MPC and local controller.

«  We will keep upgrading the software to handle the unexpected situations.
* Relationship with facility operators and occupants are important.

« MPC can be easily blamed for any (unrelated) malfunctions.
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Large Commercial Building Dynamic HVAC Predictive

Controls

Supervisory MPC control system

Coordinates with Building

Automation System

Can optimize for cost, energy, CO, __ -- i o

emissions
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Test Sites: LBNL, BU|Id|ng 59

Sector/Building Type

Technology & End Use

Communications
Pathway

Testing Status/Timeline

Large Commercial

Underfloor Air Distribution
(UFAD) w/ Reheat from AWHP, 4
Water-Cooled DX RTUs

3rd party cloud -> LBNL cloud <-
> B59 ALC <-> HVAC

four field tests in Aug/23,
Oct/23, Feb/24, and Apr/24.
New tests planned with new
price profiles




Communication Architecture
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Price Third party LBNL campus
Server cloud to network,
LBNL network MPC SOAP interface
Weather server B90O
forecast
API
LBNL campus
network
B59
Monitorin LBNL server
& Database
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MPC is able to shift load with different prices and seasons

Median Energy Plots

Median Energy Plots
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MPC load shifting leads to cost savings while maintaining
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Price responsive Model Predictive Control (MPC) during Summer
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Daily HVAC Energy Cost [$]

Test Results: MPC leads to cost savings and keeps comfort

Daily Uncomfortable Degree Hour [K-h]
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Key Learnings

MPC can shift load but makes data management more critical

MPC can respond to four different dynamic price profiles in four seasons
using the same code

Thermal comfort was not compromised: temperature range in zones was
tighter & no complaints by occupants

MPC maintenance required significant continuous effort (data stream
Interruptions, server restarts, and software updates)

MPC should have basic understanding of underlying control logic: e.g. “Smoke
Mode” imposed by operators to constrain outside air intake when wildfires
active, or BMS logic to allow MPC to turn on RTUs during unoccupied times.
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Campus-wide Field Demonstration of Load-shifting, Peak
Reduction, and Full Renewable Utilization

Test Sites:
e UC-Merced Campus
e UC-San Diego Campus
UCMERCED
UMNIVERSITY OF CALIFORMIA o . .

Sector/Building District Energy Systems

Type

Technology & 5000 ton Chiller I-31E§8MW /1.9 MWh

End Use plants + 2M gallan = -
Chilled water tank | </ EV charging
+ 4 MW PVs stations

Communications | CFH signal or other |- MPC server <->

Pathway signals -> MPC PowerFlex Controller

O server <-> ALC <-> |<> EVs
HVAC - Local MPC server
UCSan Diego <-> BESS control <->
BESS

Testing Four week-long Several (>10) da%zz

Status/Timeline tests in summer teSészlgzs:,gummer
2022 and 2023 an

BERKELEY LﬂuB



Control and Communication Architecture
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Control: Central Chiller Plant + TES + On-site PVs

Control inputs determined by MPC server: ! 11 Ll. | =
1) primary water flow rate setpoint, 2) plant mode ©
H PV power S rWEather forecast ] ( PV forecast ] Grid signal
..................................... _‘_| I?:--------, L 2 NOAA AP lib modul
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i _
Cooling Towers : Pevwar imported
— — —\ — — — — — — 1 froem the geid
A T A T R R L0 A T A U A S A T , ! {= campus net power
II.' "'. / | ."I I". / Ve "._ / Y= I". / v f \ : consumpdion))
i ————t— ¢ r
Fhe - \
MPC server 1
/ + Plant model (Chiller Plant + TES)
+ Cooling load forecaster
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+ Post processing read
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Chilled water flow rate setpoint
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Field Test Result Summary & Takeaways (l) : District Cooling
Systems

Field test results with a highly dynamic pricing signal

When the price rate is high

% The single control deployment

o e Ilz_li?.}_i_? I*iiﬁiiﬁﬁ${% ?_& achieved a 5 MWh load shift (1.25

A
o

5 MWh Load Shift MW x 4 hOUI’S), which
=@ (= 1.25 MW X 4h)!t demonstrates great effectiveness.

Chiller Plant Power [kW]

--!T__?% % District Energy Systems would
Q-l.---ij %I'%' provide a highly cost-effective

% n @é solution to economically securing
] ? o
o 12 14 15 16 17 18 demand response (DR) CapaCIty
5090 | egmmn ' - and load flexibility for the grid.
AQ0O0 1 ?ET §-$ ty g

Campus Net Power[kw]

=
*ﬁéiiééé%
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Field Test Result Summary & Takeaways (ll) : BESS

Result with Two Peak Highly Result with One Peak
Dynamic Price Dynamic Price
s Im P = H « BESS discharges at peak
L- -g— L . L’ prices and charges at minimum
i H R S H el prices
N .' "II « ~$1,000 daily revenue
st | = N I,' [ J . s
g’ \ E—— | ,' | opportunity from arbitrage
2 Ilu |"|I H / S I', f
“ I I' - . - .
v 0d:00 0&8:00 12:00 16:00 20:00 l: e e . o iln:j.il 2023 * ngher arbltrage Opportunlty

with two peak pricing

Summary of daily revenue from BESS field tests

Test Date Price Curve Daily Revenue
07/22/2023 TwoPeakHDP $1,226
07/23/2023 TwoPeakHDP $1,347
07/29/2023 SummerHDP $1,018
07/30/2023 SummerHDP $1,023
08/06/2023 SummerLDTOU $893
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Field Test Result Summary & Takeaways (lll) : EV Charging
Stations

e Benchmark cases:

10 sl : 08
aseline(avy) .
s — CalFlexHub £ o Baseline (tests run May 1-7, 2022):
= B —ConstP = . .- -
o —V0G 08 m EV charging schedule optimized without
5 6l - N TwoPeakHDP,  _._.: ﬁ i i
2 -~ 0.2 price signal.
E% ) g o ConstP (simulated):
I N N [ e e T = 09T m Constant power for the entire plug duration.
¢ - & o VOG (simulated):
d h - A e " " 0 m  Maximum charging power until energy
( . e
< Time of the Day (hours) demand is satisfied.
S 030 e Optimized with price signal:
- > o5 o CalFlexHub (tests run June 26 - July 2, 2022):
g 020 m EV charging schedule optimized.
5T
32 0.15
2210 e More than 50% reduction in cost compared to benchmark
E cases
= 005 e Optimized (delayed) workplace charging is well-suited for
0.00 carbon emission reductions

Control Strategies

mConstP =WVOG CalFlexHub Baseline
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Key Learning & Vision

UC San Dego

The participating campuses span
three different 10U territories
(PGAE, SDG&E and SCE)

* Bakersfield College and Pitzer
College are near the boundaries.

e E—

(a) UC-Merced (PG&E): chiller
plant with 2M gallon chilled
water tank

(b) UCSD (SDGAE): battery
energy storage system

(c) Pitzer Cot;oge (SCE): three ice
storage tanks totalling 560 ton-hr

L

axd
(d) Bakersfield College (PGAE):
chilled water tank with 0.7M gallons
of water

Figure 2: Sample DERs of our four demonstration sites

Table 3: DER descriptions and conservative estimates of maximum DR capacities for this project at the

stations

plant EMS

demonstration sites
Metric Target specification
UC Merced UC San Diego Bakersfield Pitzer College
Types of DERs for |- 5000 ton chiller plant |- 10 MW/40 MWh|- 1800 ton chiller|- Two chiller plants
this project - 2M gallion chilled| BESS plant totalling 285 ton
water tank - 9689 EV charging|- 0.7M gallons of|- Six ice storage tanks (
-4 MW PV stations equipped |chilled water 1000 ton-hr in total)

- 30 EV charging|with Adaptive Load|- 3.6 MW
optional: 35

Management (ALM), |-

- oplional®. around 40 |- 3 MW PV campus
campus buildings all |-
connected to central |campus  buildings

with plug load
controllers and
connected  Bghting
systems

optional: 11 |with > 0.7M sq. ft.

PV -< 1MW PV

buildings

A conservative
estimation of site
DR capacity (not

target)

125 MW (only from|8 MW (only from|0.5 MW
chiller + TES plant) BESS)

chiller + TES plant) |chiller + TES plant)

(only from|0.1 MW (only from

Many higher education campuses already have MW-scale
central chiller plants, MW-hr scale thermal energy storage,
and rapidly expanding EV charging stations, along with other
large distributed energy resources (DERS).

Significantly greater effectiveness (i.e., $ savings or load
shifting capacity per deployment) can be achieved for district
energy systems compared to SMCBs if MPC is successfully
deployed.

Proposed Campus-VPP

Standalone =5

Multi-campus :

VPP ou|

EV charging  Building
station _thermostat  storage




PANEL DISCUSSION
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